

Security in the Internet of Things: A Survey on
Application Layer Protocols

Lavinia N stase
Faculty of Automatic Control and Computer Science,

University Politehnica of Bucharest, Romania
lavinia.nastase10@yahoo.com

Abstract – The rapid development of technology

nowadays led people to a new and revolutionary concept,
named the Internet of Things. This model imposes that
all “objects”, such as personal objects (smartphones,
notebooks, smart watches, tablets etc), electronic
equipment embed with sensors and other environmental
elements are always connected to a common network.
Therefore, one can access any resource at any time, by
using a device recognized in the network. While the IoT
may be economically and socially beneficial, the
implementation of such a system poses many difficulties,
risks and security issues that must be taken into
consideration. Nowadays, the architecture of the Internet
must be updated and rethought in order to interconnect
trillions of devices and to ensure interoperability between
them. Nevertheless, the most important problem is the
security requirements of the IoT, which is probably one
of the main reasons of the relatively slow development of
this field. This paper presents the most important
application layer protocols that are currently used in the
IoT context: CoAP, MQTT, XMPP. We discuss them
both separately and by comparison, with focus on the
security provided by these protocols. Finally, we provide
some future research opportunities and conclusions.

Keywords: Internet of Things (IoT), IoT Security,
Application layer protocols, CoAP, MQTT, XMPP

I. INTRODUCTION
The modern world is leading towards this whole new

concept of the Internet of Things, but the exact definition of
this concept is still a subject of debate in the research
world. The concept was released for the first time in 1999,
by the Auto-ID laboratory of the MIT (Massachusetts
Institute of Technology) and it was defined as “data and
devices continually available through the Internet” [1]. The
IoT comprises sensors, smart devices, networks, cloud
computing, all connected through common standards. Each
layer poses vulnerabilities and security threats. The second
section of this paper describe some proposed architectures
of the IoT, which strive to provide a flexible layered model
that should support a large number of connected
heterogeneous objects. Section III describes three of the
most common protocols in the application layer and aims to

provide a critical approach towards the security of each one
of them. We also make a comparison of the discussed
protocols. Section IV focuses on vulnerabilities and
possible issues in the application layer. The last two
sections provide some ideas for future research in this field
and conclusions on the paper.

II. IOT GENERAL ARCHITECTURE

Figure 1 illustrates the main underlying technologies,
according to [1], as following:

- RFID (Radiofrequency identification), that uses a tag
to identify and track the objects to which they are
attached,

- Sensors, that have the purpose of collecting data and
digitizing it for further processing, and actuators, for
transforming digital commands into physical actions
as light, heat or movement; for example, querying
location, gathering environmental parameters, such as
temperature or humidity, measuring weight, vibration,
speed etc.

- Smart technologies, to enhance the information
processing capabilities,

- Nano-technologies, aiming to connect small “things”.

a) RFID

b) Sensors, Actuators

c) Smart Technologies

d) Nanotechnologies

Figure 1. The main underlying IoT Technologies

2017 21st International Conference on Control Systems and Computer Science

2379-0482/17 $31.00 © 2017 IEEE

DOI 10.1109/CSCS.2017.101

659

Given the huge amount of independent researches in
the last decade, materialized in a large volume of new
products on the market, the interoperability and scalability
should be kept in mind, especially in a less standardized
architecture compared to OSI. The stages of an IoT system
can be summarized in five steps that are useful in defining a
scalable architecture, as in figure 2.

a) Collection → b) Storage

→ c) Process → d) Transmission

 → e) Delivery

Figure 2. The stages of an IoT System

The first step in any IoT application is the collection of
data. Let us take the example of an eHealth application that
measures a patient’s blood pressure. Firstly, the data
collectors located in the device that takes the blood
pressure are used; they can be static, such as a RFID tag,
or dynamic, as a sensor. Secondly, we are interested in
storing this data locally, in the device that contains the
collector; usually, these devices have low memory and
processing power, therefore the operations done at this
level have to be optimized. In case of stateless devices
(usually RFID), the data is be stored into the cloud.
Thirdly, the IoT offers various services and processing of
the gathered data, as well as responding to queries
regarding the information that resulted in this process. The
fourth step consists in transmitting the data; there are
various ways of transmission: from data collectors to data
centers/cloud, from data centers to processing units or to
end users. In our case, we would be interested to send the
blood pressure information to the patient’s doctor, along
with some reports, such as patient’s history or prognosis.
The last step, Delivery, sometimes overlaps the previous,
especially in less complex applications. However, when
delivery is necessary as the last step, it usually involves
provisioning and administration tasks in a complex and
strictly defined business environment.

Keeping in mind these essential steps, the four
proposed architectures described in [2] should be
straightforward. We state them as an introduction to the
next section.

a. Three layered architecture: application layer, network
layer, perception layer.

b. Middleware based architecture: application layer,
middleware layer, coordination layer, backbone
network layer, existed alone application layer, access
layer, edge technology.

c. Service oriented Architecture (SOA based):
applications, service composition, service
management, object abstraction, objects.

d. Five layered architecture: business layer, application
layer, service management, object abstraction,
objects.

The details of all these proposed solutions are
discussed in [1]. A generic model agreed in many articles
is a five-layer architecture, from end-user to real world:
business, application, middleware, network and
perception, which is a combination of the models
enumerated above. The difficulty on agreeing upon a
common design emphasizes the lack of standardization
and common approval in the IoT, which leads to the
necessity of further research in this field. One of the main
reasons for relatively poor standardization is the huge
number of competitors on the market of “smart devices”
aiming to earn the supremacy of their own devices, in a
wide range of applications and without a true global
authority to enforce a standard.

The focus in this paper is on the application layer, the
true service provider for the end user. Since this layer is
the “gate” to outside of the network, there are numerous
threats that can arise. This level assures the user
authentication and access to personal and sensitive data;
therefore, the protocol must provide mechanisms for
preventing intruders and malicious users to gain access to
the system. The traditional attacks can happen: DDoS
attacks, spoofing, data modification, eavesdropping etc.

III. SECURITY IN THE APPLICATION LAYER

Any object, tangible or not, cannot be 100% secure
because in this perfectly secure state it cannot be still be
useful in terms of its intrinsic value [3]. However, if it can
maintain its maximum intrinsic value under different
conditions, it can be considered secure, therefore, ensuring
IoT security requires maintaining the highest intrinsic
value, including all the IoT objects in the application layer
context. In order to build a valuable security context,
threats must be known and understood, and the following
questions must get precise answers [4]:

1. What are the assets?
2. Who are the principal entities?
3. What are the threats?
4. Who are the threat actors?
5. What capability and resource levels do threat actors

have?
6. Which threats can affect what assets?

660

7. Is the current design protected against threats?
8. What security mechanisms could be used against

threats?

According to [5], security and privacy issues are a
growing concern for users and suppliers in their shift
towards the IoT. The IoT needs to be built in such a way as
to ensure easy and safe usage control. Consumers need
confidence to fully embrace the IoT in order to enjoy its
benefits and avoid security and privacy risks.

The overall security aspects for E2E communications
are well stated by [6], which can be taken as a standard for
assessing cyber-security. Based on this, specific
evaluations of protocols that provides such communication
can be done, and [7] is such an example. The
recommendation proposes a general and tridimensional
model for the security: (1) three security layers
(applications, services and infrastructure), (2) three
security planes (end user, control and management) which
are identified based on the activities performed over the
network, and also (3) eight security dimensions to address
general system vulnerabilities (Access Control,
Authentication, Non-Repudiation, Data Confidentiality,
Communication Security, Data Integrity, Availability and
Privacy). By restricting the analysis to the application
layer, it passes into a bidimensional one, involving three
security planes and eight security dimensions. This
security assessing model is rather general and can be
extended to other layers too, including application layer.

In this section, three common IoT application layer
protocols are taken into discussion: MQTT, XMPP and
CoAP. As a common point of discussion, any of them is
derived from traditional Internet protocols and further
adapted to the IoT specifications to make them suitable for
application involving constrained devices and networks.
However, each of them performs better only in certain and
specific conditions. Security characteristics, comments and
opportunities are provided for each as well.

A. MQTT

MQTT is a publish-subscribe messaging protocol,
based on brokers, created by IBM. MQTT is a lightweight
protocol because all messages have a small code footprint.
It uses TCP/IP protocol and it is suitable in constrained
environments, for example when a device has low memory
resources or a limited processor. Also, message payload is
limited to a maximum of 256 MB of information, which
makes this lightweight protocol suitable in expensive and
unreliable networks.

According to the MQTT protocol specification1, three
QoS (quality of service) modes are provided for the
message delivery:

• “Fire and forget” mode, also known as “at most
once”: in this case, message loss can happen;
therefore, it can be used in environments where an
individual measurement is not of great importance,
since a next one would be published afterwards.

• “Acknowledged delivery” or “at least once”: send
duplicates can occur, nonetheless all messages arrive.

• “Assured delivery” or “exactly once”: in this mode,
all messages arrive to their destination exactly once.
This QoS is useful in applications where missing or
duplicate messages lead to unwanted results, as it can
happen in a payment service, for example.

Although the last two levels are more reliable, they
also impose a certain overhead and bandwidth
requirements which are not always feasible, but clients can
choose the desired QoS.

Since the MQTT protocol is based on TCP/IP, a
connection is initiated by a client to a broker on a certain
port (either standard or defined by the broker). For
example, TCP port 1883 is reserved for non-encrypted
while 8883 is for encrypted communication using
SSL/TLS. A session usually consists of four phases:
connection, authentication, communication, termination. A
client can subscribe to topics of interest, defined by a
publisher and can also unsubscribe from them. The
connection can be closed either by the client or by the
broker.

MQTT is currently used in the Facebook Messenger
application, since is allows delivering messages in a
timespan of milliseconds, regardless of the Internet
connection, but also requires low power, which prevents
smartphone batteries from draining.

Security
The interesting part in the MQTT specification is the

fact that it has no imposed security mechanisms, because it
is designed to operate in secure networks, developed for
specific needs. Therefore, it is not a good idea to create a
globally MQTT network, because as the size of the topic
tree grows, complexity increases.

The IoT environment nowadays requires however a
standard for authentication and therefore MQTT relies on
SSL/TLS encryption; otherwise, the username and
password would be sent in clear text. During the
handshake, the client validates the server certificate, which
means that it verifies its identity in order to authenticate it.

1 MQTT V3.1 Protocol Specification,

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-
v3r1.html

661

Optionally, client certificates can also be used, in such
way that the broker can authenticate the client that requests
the connection2. This is not a simple process and there is
no way for the message receiver to know who sent the
original message unless that information is contained in
the actual message (not mandatory). In an extended
network, a poor application design based on MQTT could
be an invitation to hackers to inject harmful messages into
the network in a very easy way. Therefore, security
features must be implemented on top of MQTT. However,
considering the specificity of a relatively isolated and
secured network, this would not be the case.

The drawback of this mechanism is that SSL/TLS is
an expensive protocol to use in constrained devices.
Nowadays, certain brokers accept anonymous clients and
therefore the username and password are no longer
required, but it is not desirable in most of the cases.

B. XMPP
XMPP (Extensible Messaging and Presence Protocol)

is composed of a set of open technologies mostly used for
chat, instant messaging, video and voice calls and is
standardized by the IETF 3 . In this protocol, data is
exchanged using small pieces of XML structured data,
called “XML stanzas”, between two or more network
entities on a client-server basis. The architecture is,
therefore, based on client-server concept; the client
requests the connection to a server to be able to exchange
messages. Since XMPP runs on top of TCP, a TCP
connection is needed before opening an XML stream.
Channel encryption is usually assured with TLS (but not
mandatory) and the authentication is made via a SASL
mechanism. Server to server connection is also possible,
after negotiating between themselves and allowing inter-
domain communication.

Abstract layering of XMPP is based on (i) Transport
Control Protocol (TCP), (ii) Transport Layer Security
(TLS) (iii) Simple Authentication and Security Layer
(SASL) and finally (iv) Extensible Messaging and
Presence Protocol (XMPP).

A XMPP Client is the entity that establishes the XML
stream with a server, after authenticating itself through
SASL negotiation. A XMPP server can manage the open
streams with the connected clients, receiving and
delivering XML stanzas as required. It also needs to verify
client authentication prior to granting access to the XMPP
network. Other responsibilities would be the client data
storage (e.g. a list of contacts in a chat-like application)

2 TechTarget, IoT Agenda – “MQTT (MQ Telemetry Transport)”,

http://internetofthingsagenda.techtarget.com/definition/MQTT-MQ-
Telemetry-Transport

3 XMPP RFC, https://tools.ietf.org/html/rfc6120

and, for some services such as conferencing, hosting add-
on services that use XMPP as communication basis4.

Finally, since XMPP based solutions are usually
deployed in decentralized client-server architectures, there
are two possible paths: client-to-server stream and server-
to-server stream. If both entities are clients, it is not
possible for them to open a communication channel
directly between them; instead they need an intermediate
entity (a server) with a certain level of trust.

Security
In terms of security, the IETF proposes for the XMPP

native support to authentication via SASL (Simple
Authentication and Security Layer) and transport security
with TLS, according to the RFC. The advantage of SASL
is that it provides a set of authentication methods from
which the client can choose one that best fits the specific
needs; however, the drawback is that a weak mechanism
still can be chosen. SASL uses Base64 coding which hides
easily recognized information; however, it doesn’t provide
any computational confidentiality. IETF recommends
secure mechanisms for peer authentication, such as
SCRAM-SHA-1 or SCRAM-SHA-1-PLUS, which protect
against man-in-the-middle-attacks, spoofing and
unauthorized access.

The stream is secured from tampering and
eavesdropping by encrypting using the TLS protocol,
specifically a STARTTLS extension that is modeled after
similar extensions for the widely used IMAP, POP3 and
ACAP protocols. To protect the connection credentials,
TLS negotiation should complete before starting SASL.

A strong security strategy could employ security
technologies that provide both mutual authentication and
integrity checking (e.g. a combination of TLS encryption
and SASL authentication). Channel encryption of an XML
stream using TLS and in some cases authentication are
commonly based on a PKIX certificate presented by the
receiving entity or, in the case of mutual authentication,
both the receiving and the initiating entity. For preserving
the integrity of the stanzas, the signature algorithm should
be at least SHA-256.

Unprotected XMPP systems are vulnerable to
eavesdropping, sniffing passwords, breaking passwords
through dictionary attacks, discovering usernames through
directory harvesting attacks, replaying, inserting, deleting,
or modifying stanzas, spoofing users, gaining unauthorized
entry to a server or account, subverting communication
streams through man-in-the-middle attacks and more.

One of the most evident vulnerabilities of XMPP, in
spite of its relative stability, emerges from the fact that a
stanza can travel along multiple streams, some of them
might not be TLS-protected. Only a robust end-to-end

4 XMPP Protocol, https://xmpp.org/

662

encryption could ensure enough confidentiality and
integrity of a stanza that travels all the “hops” along a
communication path. However, the XMPP community has
so far failed to produce an end-to-end encryption solution
that might be suitable for widespread implementation and
deployment in IoT.

C. CoAP
Since IoT enables a wide range of application

scenarios with potentially critical actuating and sensing
tasks in given constrained environments, e.g., in the e-
health domain, a simple, though complete protocol is
needed. CoAP (Constrained Application Protocol) is a
specialized web transfer protocol for use with IoT
constrained nodes (i.e. having limited memory and
processing power) and constrained networks (i.e. low-
power and lossy), being currenly standardized at the
IETF5.

CoAP obeys a simple request/response interaction
model between application endpoints, most similar to the
client/server model of HTTP, also providing built-in
support for services and resources. CoAP makes use of
GET, PUT, POST, and DELETE methods in a similar
manner to HTTP.

However, unlike HTTP, CoAP deals with these
interchanges asynchronously over a datagram-oriented
transport, such as UDP, most suitable in constrained
environments. Also, having UDP in transport layer, unlike
HTTP, CoAP supports the use of multicast IP destination
addressing, thus enabling multicast requests.

Moreover, unlike HTTP, requests and responses are
not sent over a previously established connection, but are
exchanged asynchronously over CoAP messages. All
CoAP traffic can be supported through only four types of
messages: (i) Confirmable (CON), (ii) Non-confirmable
(NON), (iii) Acknowledgement (ACK) and (iv) Reset
(RST).

Abstract layering of CoAP is based on (i) UDP, (ii)
Requests/Responses and Messages and (iii) Application.

Message reliability is provided by marking as CON,
eventually retransmitting it on a default timeout basis until
a corresponding ACK is received from the corresponding
endpoint. However, when a message does not require
reliable transmission (for example, each single
measurement out of a stream of sensor data) it can be sent
as NON. As CoAP is by default bound to unreliable
transports such as UDP, messages may arrive out of order,
appear duplicated, or go missing without notice. For this
reason, CoAP implements a lightweight reliability
mechanism, without trying to re-create the full feature set
of a transport like TCP.

5 CoAP RFC, https://tools.ietf.org/html/rfc7252

Security
Various solutions can be employed for binding a

security layer to CoAP. The specificity of using UDP
instead of TCP for transport makes inapplicable the known
security protocols in the form they are used in association
with TCP. Conversely, for some of such protocols
substitutes have been developed. For example, the
replacement of TLS (specific to TCP) into UDP
environments is DTLS (Datagram Transport Layer
Security).

Due to the physically limited access, some
applications do not even need to employ any security
bound to transport layer (UDP). Instead, there are
techniques to provide lower-layer security, namely IPSec
at the lower (network) layer, when connecting to the
outside world. In this mode, the data packets are simply
sent over normal UDP over IP. The system security is
provided only by routing techniques, by keeping attackers
from being able to send/receive packets to/from the
specific network with the CoAP nodes.

By using the three DTLS modes described below, for
securing UDP transport for CoAP, the new architecture is
called CoAPs (secured), just the same as HTTP secured
with SSL/TLS is replaced by HTTPS [8]. In this way, the
security association can be used to authenticate (within the
limits of the security model) and, based on this
authentication, authorize the communication partner, since
CoAP itself does not provide any protocol primitives for
authentication or authorization.

PreSharedKey mode is based on a list of pre-shared
keys, each one including a list of nodes it can be used to
communicate with. There may be one key for each node,
however if more than two entities share the same pre-
shared key, this only enables the entities to authenticate as
a member of a group and not as a specific peer. When
trying to establish a connection to a new node, the system
selects an appropriate key based on which nodes it is
trying to reach and then forms a DTLS session using PSK
(Pre-Shared Key) mode of DTLS.

In RawPublicKey mode, the device has an asymmetric
key pair without a certificate (a raw public key) that is
validated using an out-of-band mechanism (most common,
the asymmetric key pair is generated by the manufacturer
and installed on the device), an identity calculated from the
public key and a list of identities of the nodes it can
communicate with. A device may be configured with
multiple raw public keys. Implementations in
RawPublicKey mode must support cipher suite
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8. The
key used must be ECDSA capable.

In Certificate mode, the device has an asymmetric key
pair with an X.509 certificate that binds it to its subject and
is signed by some common trust root. The device also has

663

a list of root trust anchors that can be used for validating a
certificate. Implementations must support the cipher suite
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8. If the
system has a shared key in addition to the certificate, then
a cipher suite that includes the shared key such as
TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA should
be used.

Using full DTLS for securing CoAP may introduce a
significant overhead in constrained environments with
either limited local memory on nodes, or limited
bandwidth on communication, or both, affecting the
overall solution efficiency. Therefore, depending on
application, DTLS modes may be configured by disabling
all the unnecessary ones, thus making the protocol much
lighter.

CoAP supports a limited set of HTTP functionality
and thus cross-protocol proxying to HTTP is
straightforward. For example, when designing a web
interface for use over either protocol or when realizing a
CoAP-HTTP proxy. Likewise, CoAP could be equally
proxyed to other protocols such as XMPP or MQTT,
which is a very good thing in terms of application
interoperability. Proxying is accomplished by means of an
intermediary. However, care should be taken when
designing and authorizing such solutions because of
vulnerabilities that can be introduced. For example, for any
pair of protocols, one of the protocols can very well have
been designed in a way that enables an attacker to cause
the generation of replies that look like messages of the
other protocol.

It is often much harder to ensure or prove the absence
of viable attacks than to generate examples that may not
yet completely enable an attack but might be further
developed by more creative minds.

IV. VULNERABILITIES AND ISSUES
At the application layer, data, applications, and

visualization servers are usually operated in large and
complex clusters or in the cloud computing
infrastructures, therefore can be affected by data
tampering, authentication to the servers, authorization of
services, provisioning of data.

Based on the specific environment of any IoT based
solution, any challenges or possible vulnerabilities at any
layer including application layer can be more or less
meaningful. For this reason, they must be carefully
assessed in the early stages of the technical design.

According to [9], vulnerabilities are weaknesses in a
system or its design that allow an intruder to execute
commands, access unauthorized data, and/or conduct
denial-of-service attacks. More, [10] identifies a threat as
an action that takes advantage of security weaknesses in a
system and has a negative impact on it, being originated
from two primary distinct sources: humans and nature. It

is evident that natural threats cannot be forecasted, the
good news is that disaster recovery plans are the best and
universally applicable choice to ensure business
continuity. The human attacker is certainly smart and is
likely to destroy privacy in the application layer by a
known vulnerability (e.g., buffer overflow, cross site
scripting, SQL injection and others), error configuration
(simple password for example), or improperly obtained
higher permission access. Four security threats at the
application layer are identified in this context [11]:

1. Privacy leak – given that the application of IoT is
executed on common operating systems and hosting
services, the attacker can easily steal user data (e.g.,
user password, historical data, and social relations)
by known vulnerabilities

2. DoS attack – the attacker can destroy the
availability of the application itself

3. Malicious code – the attacker can upload malicious
codes through the known vulnerabilities, leading to
fetcher software infections

4. Social engineering – certain relationship exists
among IoT users which attackers can easily analyze
or obtain additional information that can be used for
attacks by social engineering.

[8] concludes that technical vulnerabilities usually
happen due to human weaknesses. Results of not
understanding the requirements comprise starting the
project without a plan, poor communication between
developers and users, a lack of resources, skills, and
knowledge, and failing to manage and control the system.
More, attacks are actions taken in order to harm a system
or disrupt normal operations by exploiting vulnerabilities
by using various techniques and tools.

Testing applications for security flaws goes well
beyond simply preventing attacks. Application
vulnerabilities can lead to lost or stolen data, which could
potentially result in even more serious consequences,
such as stakeholder lawsuits, extensive remediation costs
and damage to brand reputation.

V. FINDING NEW RESEARCH DIRECTIONS
To reduce both potential threats and their

consequences, more research is needed to fill the gaps
in knowledge regarding threats and cybercrime and
provide the necessary steps to mitigate probable attacks.

Some IoT application protocols do not even have
security features, so they can not actually be used in a
Internet based IoT solution, even if, in terms of
functionality, they perform better than others prefferred
with security in mind. For example, in can be mentioned
that more work can be done to empower XMPP or
MQTT in E2E secured solutions.

664

Regarding CoAP, even if DTLS is being considered
to support security, it presents some limitations
motivating other approaches to security at the
application-layer that can be addressed by further
research. In [12] the author discusses various issues that
may impede the usage of DTLS in constrained sensing
devices, for example, the inadequateness of the timers
for message retransmission as defined in the protocol,
which may require large buffers on the receiver to hold
data for retransmission purposes, and the size of the
code required to support DTLS in constrained sensing
platforms. In response, [13] and [14] propose solutions
to some issues identified during massive cyberattacks in
the last three years, by making TLS/DTLS more rapid
and resilient, however, some issues still remain and still
need to be addressed by researchers.

Further research can also address the support of
public keys and certificates in the context of CoAP
security. Online validation of certificates may be
achieved by investigating the applicability of existent
Internet approaches such as the Online Certificate
Status Protocol (OCSP) [15] or OCSP stapling through
the TLS Certificate Status Request extension defined in
RFC 6066 [16], considering that such mechanisms
could be adapted or simplified.

Other important issue to consider for further
research is the computational impact of ECC
cryptography on existing sensing devices. In this
context, optimizations may be designed at the hardware
of sensing platforms to support ECC computations.

In this context, [11] concludes that the overall
research on security issues related to the IoT domain
remains inadequate. The inherent openness,
heterogeneity, and terminal vulnerability of the IoT
pose a huge risk, considering two main problems:
coupling (different technologies and trust mechanisms
are related to each other) and completness (security
architecture design should consider future application
trends).

Considering the benefits of scalability and
interoperability at the application layer, further research
must be taken in the field of securing cross-protocol
proxies for the application layer IoT solutions.

VI. CONCLUSIONS
The Internet of Things is an universal medium for

"things" to communicate with each other via Internet,
access data on the Internet, store and retrieve data, and
interact with users. They will continue to change our
lives as the involved technologies are continuously
growing. This paper describes briefly three of the IoT
application layer protocols from the security point of
view. It can be seen that a trade-off is made between
lightweight and security, thus none of them is best for

any type of solution in terms of both security and
functionality.

Security is the biggest challenge facing the IoT
today. In developing new solutions for the IoT,
organizations must consider the larger context and
implications of security and privacy from the very
beginning. On the other hand, to prevent cyber attacks,
organizations must ensure that they educate their
consumers about the correct security procedures to be
followed while using an IoT system.

It is evident that successful attackers are smart
since their success is based on knowledge. But it is also
true that for successful IoT projects, the designers must
be smarter, in other words be at least one step in front
of any smart attacker. It is a continuous competition
between the two parties and will forever be like that,
since none is truly wise, meaning know and understand
everything. For that, like in any domains, the IoT
research has to continue forever, sooner or later any
reasonable technological barrier that can be imagined
nowdays has to be broken.

In conclusion, this survey may provide a
contribution to documenting the status of the dynamic
area of research in securing the IoT application layer
protocols.

REFERENCES
[1] Fei Hu – “Security and Privacy in Internet of Things (IoT).

Models, Algorithms and Implementarions”, CRC Press, 2016
[2] Stefan Mijovic, Erion Shehu, Chiara Buratti – “Comparing

Application Layer Protocols for the Internet of Things via
Experimentation”, 2016 IEEE 2nd International Forum on Research
and Technologies for Society and Industry Leveraging a better
tomorrow (RTSI)

[3] J. M. Kizza – "Guide to Computer Network Security",
Springer, 2013

[4] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H.
Sundmaeker, A. Bassi, I. S. Jubert, M. Mazura, M. Harrison, M.
Eisenhauer et al. – "Internet of Things Strategic Research Roadmap",
Internet of Things-Global Technological and Societal Trends, 2011

[5] P. N. Mahalle, N. R. Prasad, R. Prasad – "Object
classification based context management for identity management in
internet of things", International Journal of Computer Applications,
vol. 63, no. 12, 2013

[6] Thamer A. Alghamdi – "Security Analysis of the
Constrained Application Protocol in the Internet of Things", IEEE
978-1-4799-2975-7/13 – 2013

[7] ITU-T Telecommunication Standardization Sector of ITU -
"X.805 (10/2003) Security architecture for systems providing end-to-
end communications", Series X: Data Networks and Open System
Communication Security

[8] Shahid Raza, René Hummen – "Lithe: Lightweight Secure
CoAP for the Internet of Things", IEEE Sensors Journal, October
2013

[9] D. L. Pipkin – “Information security”, Prentice Hall PTR,
2000

[10] H. G. Brauch – "Concepts of security threats, challenges,
vulnerabilities and risks", Coping with Global Environmental Change,
Disasters and Security, Springer, 2011

665

[11] Weizhe Zhang, Baosheng Qu - "Security Architecture of the
Internet of Things Oriented to Perceptual Layer", International
Journal on Computer, Consumer and Control (IJ3C), Vol. 2,
No.2(2013)

[12] K. Hartke – "Practical Issues With Datagram Transport
Layer Security in Constrained Environments", DICE Working Group,
Internet-Draft, Universität Bremen TZI, April 8, 2014.

[13] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn
Tackmann, Daniele Venturi - "(De-)Constructing TLS 1.3",
Proceedings of Progress in Cryptology – INDOCRYPT 2015: 16th
International Conference on Cryptology in India, Bangalore, India,
December 6–9 2015

[14] Hugo Krawczyk, Hoeteck Wee – "The OPTLS Protocol and
TLS 1.3 (extended abstract)", IEEE European Symposium on
Security and Privacy (EuroS&P), March 21–24 2016

[15] M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams –
"X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol-OCSP", RFC 2560, 1999.

[16] D. Eastlake – "Transport Layer Security (TLS) Extensions:
Extension Definitions", RFC 6066, 2011.

[17] Vasileios Karagiannis, Periklis Chatzimisios, Francisco
Vazquez-Gallego, Jesus Alonso-Zarate – “A Survey on Application
Layer Protocols for the Internet of Things”, Transaction on IoT and
Cloud Computing 2015

[18] Jorge Granjal, Edmundo Monteiro, Jorge dá Silva –
“Security for the Internet of Things: A Survey of Existing Protocols
and Open Research Issues”, IEEE Communication Surveys &
Tutorials, Vol. 17, No. 3, Third Quarter 2015

[19] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi,
Mohammed Aledhari and Moussa Ayyash – “Internet of Things: A
Survey on Enabling Technologies, Protocols, and Applications”,
IEEE Communication Surveys & Tutorials, Vol. 17, No. 4, Fourth
Quarter 2015

[20] Mohamed Abomhara, Geir M. Køien – "Cyber Security and
the Internet of Things: Vulnerabilities, Threats, Intruders and
Attacks" – River Publishers 2015, Journal of Cyber Security, Vol. 4

[21] D. Jiang, C. ShiWei – "A study of Information Security for
M2M of IoT", Advanced Computer Theory and Engineering
(ICACTE), 2010 - 3rd International Conference on, vol. 3. IEEE,
2010

[22] C. Hongsong, F. Zhongchuan, Dongyan – "Security and
Trust Research in M2M System", Vehicular Electronics and Safety
(ICVES), 2011 IEEE International Conference

[23] I. Cha, Y. Shah, A. U. Schmidt, A. Leicher, M. V.
Meyerstein – “Trust in M2M Communication", Vehicular
Technology Magazine, IEEE, vol. 4, no. 3, 2009

[24] S. Andreev, Y. Koucheryavy – "Internet of Things, Smart
Spaces, and Next Generation Networking", Springer, LNCS, vol.
7469

[25] J. Lopez, R. Roman, C. Alcaraz – "Analysis of Security
Threats, Requirements, Technologies and Standards in Wireless
Sensor Networks", Foundations of Security Analysis and Design V.
Springer, 2009

[26] R. Roman, J. Zhou, J. Lopez – “On the Features and
Challenges of Security and Privacy in Distributed Internet of Things",
Computer Networks, vol. 57, no. 10, 2013

[27] D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac –
“Internet of Things: Vision, Applications and Research Challenges",
Ad Hoc Networks, vol. 10, no. 7, 2012

[28] M. Abomhara, G. Koien – "Security and privacy in the
internet of things: Current status and open issues", PRISMS 2014, the
2nd International Conference on Privacy and Security in Mobile
Systems (PRISMS 2014), Aalborg, Denmark, May 2014

[29] E. Bertino, L. D. Martino, F. Paci, A. C. Squicciarini – "Web
services threats, vulnerabilities, and countermeasures", Security for
Web Services and Service-Oriented Architectures, Springer, 2010

[30] D. G. Padmavathi, M. Shanmugapriya – "A survey of attacks,
security mechanisms and challenges in wireless sensor networks",
arXiv preprint arXiv:0909.0576, 2009

[31] E. Bertino, L. D. Martino, F. Paci, A. C. Squicciarini – "Web
services threats, vulnerabilities, and countermeasures", Security for
Web Services and Service-Oriented Architectures, Springer, 2010

666

