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Abstract – The rapid development of technology 

nowadays led people to a new and revolutionary concept, 
named the Internet of Things. This model imposes that 
all “objects”, such as personal objects (smartphones, 
notebooks, smart watches, tablets etc), electronic 
equipment embed with sensors and other environmental 
elements are always connected to a common network. 
Therefore, one can access any resource at any time, by 
using a device recognized in the network. While the IoT 
may be economically and socially beneficial, the 
implementation of such a system poses many difficulties, 
risks and security issues that must be taken into 
consideration. Nowadays, the architecture of the Internet 
must be updated and rethought in order to interconnect 
trillions of devices and to ensure interoperability between 
them. Nevertheless, the most important problem is the 
security requirements of the IoT, which is probably one 
of the main reasons of the relatively slow development of 
this field. This paper presents the most important 
application layer protocols that are currently used in the 
IoT context: CoAP, MQTT, XMPP. We discuss them 
both separately and by comparison, with focus on the 
security provided by these protocols. Finally, we provide 
some future research opportunities and conclusions. 

Keywords: Internet of Things (IoT), IoT Security, 
Application layer protocols, CoAP, MQTT, XMPP 

I.  INTRODUCTION 
The modern world is leading towards this whole new 

concept of the Internet of Things, but the exact definition of 
this concept is still a subject of debate in the research 
world. The concept was released for the first time in 1999, 
by the Auto-ID laboratory of the MIT (Massachusetts 
Institute of Technology) and it was defined as “data and 
devices continually available through the Internet” [1]. The 
IoT comprises sensors, smart devices, networks, cloud 
computing, all connected through common standards. Each 
layer poses vulnerabilities and security threats. The second 
section of this paper describe some proposed architectures 
of the IoT, which strive to provide a flexible layered model 
that should support a large number of connected 
heterogeneous objects. Section III describes three of the 
most common protocols in the application layer and aims to 

provide a critical approach towards the security of each one 
of them. We also make a comparison of the discussed 
protocols. Section IV focuses on vulnerabilities and 
possible issues in the application layer. The last two 
sections provide some ideas for future research in this field 
and conclusions on the paper.  

II.  IOT GENERAL ARCHITECTURE 

Figure 1 illustrates the main underlying technologies, 
according to [1], as following: 

- RFID (Radiofrequency identification), that uses a tag 
to identify and track the objects to which they are 
attached, 

- Sensors, that have the purpose of collecting data and 
digitizing it for further processing, and actuators, for 
transforming digital commands into physical actions 
as light, heat or movement; for example, querying 
location, gathering environmental parameters, such as 
temperature or humidity, measuring weight, vibration, 
speed etc. 

- Smart technologies, to enhance the information 
processing capabilities, 

- Nano-technologies, aiming to connect small “things”. 

 
a) RFID 

 
b) Sensors, Actuators 

 
c) Smart Technologies

 
d) Nanotechnologies

Figure 1. The main underlying IoT Technologies 
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Given the huge amount of independent researches in 
the last decade, materialized in a large volume of new 
products on the market, the interoperability and scalability 
should be kept in mind, especially in a less standardized 
architecture compared to OSI. The stages of an IoT system 
can be summarized in five steps that are useful in defining a 
scalable architecture, as in figure 2. 

a) Collection  → b) Storage 

→ c) Process  → d) Transmission 

  → e) Delivery 

Figure 2. The stages of an IoT System 

The first step in any IoT application is the collection of 
data. Let us take the example of an eHealth application that 
measures a patient’s blood pressure. Firstly, the data 
collectors located in the device that takes the blood 
pressure are used; they can be static, such as a RFID tag, 
or dynamic, as a sensor. Secondly, we are interested in 
storing this data locally, in the device that contains the 
collector; usually, these devices have low memory and 
processing power, therefore the operations done at this 
level have to be optimized. In case of stateless devices 
(usually RFID), the data is be stored into the cloud. 
Thirdly, the IoT offers various services and processing of 
the gathered data, as well as responding to queries 
regarding the information that resulted in this process. The 
fourth step consists in transmitting the data; there are 
various ways of transmission: from data collectors to data 
centers/cloud, from data centers to processing units or to 
end users. In our case, we would be interested to send the 
blood pressure information to the patient’s doctor, along 
with some reports, such as patient’s history or prognosis. 
The last step, Delivery, sometimes overlaps the previous, 
especially in less complex applications. However, when 
delivery is necessary as the last step, it usually involves 
provisioning and administration tasks in a complex and 
strictly defined business environment. 

Keeping in mind these essential steps, the four 
proposed architectures described in [2] should be 
straightforward. We state them as an introduction to the 
next section. 

a. Three layered architecture: application layer, network 
layer, perception layer. 

b. Middleware based architecture: application layer, 
middleware layer, coordination layer, backbone 
network layer, existed alone application layer, access 
layer, edge technology. 

c. Service oriented Architecture (SOA based): 
applications, service composition, service 
management, object abstraction, objects. 

d. Five layered architecture: business layer, application 
layer, service management, object abstraction, 
objects.  

The details of all these proposed solutions are 
discussed in [1]. A generic model agreed in many articles 
is a five-layer architecture, from end-user to real world: 
business, application, middleware, network and 
perception, which is a combination of the models 
enumerated above. The difficulty on agreeing upon a 
common design emphasizes the lack of standardization 
and common approval in the IoT, which leads to the 
necessity of further research in this field. One of the main 
reasons for relatively poor standardization is the huge 
number of competitors on the market of “smart devices” 
aiming to earn the supremacy of their own devices, in a 
wide range of applications and without a true global 
authority to enforce a standard.  

The focus in this paper is on the application layer, the 
true service provider for the end user. Since this layer is 
the “gate” to outside of the network, there are numerous 
threats that can arise. This level assures the user 
authentication and access to personal and sensitive data; 
therefore, the protocol must provide mechanisms for 
preventing intruders and malicious users to gain access to 
the system. The traditional attacks can happen: DDoS 
attacks, spoofing, data modification, eavesdropping etc. 

III. SECURITY IN THE APPLICATION LAYER 

Any object, tangible or not, cannot be 100% secure 
because in this perfectly secure state it cannot be still be 
useful in terms of its intrinsic value [3]. However, if it can 
maintain its maximum intrinsic value under different 
conditions, it can be considered secure, therefore, ensuring 
IoT security requires maintaining the highest intrinsic 
value, including all the IoT objects in the application layer 
context. In order to build a valuable security context, 
threats must be known and understood, and the following 
questions must get precise answers [4]: 

1. What are the assets? 
2. Who are the principal entities? 
3. What are the threats? 
4. Who are the threat actors? 
5. What capability and resource levels do threat actors 

have? 
6. Which threats can affect what assets? 
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7. Is the current design protected against threats? 
8. What security mechanisms could be used against 

threats?  

According to [5], security and privacy issues are a 
growing concern for users and suppliers in their shift 
towards the IoT. The IoT needs to be built in such a way as 
to ensure easy and safe usage control. Consumers need 
confidence to fully embrace the IoT in order to enjoy its 
benefits and avoid security and privacy risks. 

The overall security aspects for E2E communications 
are well stated by [6], which can be taken as a standard for 
assessing cyber-security. Based on this, specific 
evaluations of protocols that provides such communication 
can be done, and [7] is such an example. The 
recommendation proposes a general and tridimensional 
model for the security: (1) three security layers 
(applications, services and infrastructure), (2) three 
security planes (end user, control and management) which 
are identified based on the activities performed over the 
network, and also (3) eight security dimensions to address 
general system vulnerabilities (Access Control, 
Authentication, Non-Repudiation, Data Confidentiality, 
Communication Security, Data Integrity, Availability and 
Privacy). By restricting the analysis to the application 
layer, it passes into a bidimensional one, involving three 
security planes and eight security dimensions. This 
security assessing model is rather general and can be 
extended to other layers too, including application layer. 

In this section, three common IoT application layer 
protocols are taken into discussion: MQTT, XMPP and 
CoAP. As a common point of discussion, any of them is 
derived from traditional Internet protocols and further 
adapted to the IoT specifications to make them suitable for 
application involving constrained devices and networks. 
However, each of them performs better only in certain and 
specific conditions. Security characteristics, comments and 
opportunities are provided for each as well. 

A. MQTT 

MQTT is a publish-subscribe messaging protocol, 
based on brokers, created by IBM. MQTT is a lightweight 
protocol because all messages have a small code footprint. 
It uses TCP/IP protocol and it is suitable in constrained 
environments, for example when a device has low memory 
resources or a limited processor. Also, message payload is 
limited to a maximum of 256 MB of information, which 
makes this lightweight protocol suitable in expensive and 
unreliable networks. 

According to the MQTT protocol specification1, three 
QoS (quality of service) modes are provided for the 
message delivery: 

• “Fire and forget” mode, also known as “at most 
once”: in this case, message loss can happen; 
therefore, it can be used in environments where an 
individual measurement is not of great importance, 
since a next one would be published afterwards.  

• “Acknowledged delivery” or “at least once”: send 
duplicates can occur, nonetheless all messages arrive. 

• “Assured delivery” or “exactly once”: in this mode, 
all messages arrive to their destination exactly once. 
This QoS is useful in applications where missing or 
duplicate messages lead to unwanted results, as it can 
happen in a payment service, for example. 

Although the last two levels are more reliable, they 
also impose a certain overhead and bandwidth 
requirements which are not always feasible, but clients can 
choose the desired QoS. 

Since the MQTT protocol is based on TCP/IP, a 
connection is initiated by a client to a broker on a certain 
port (either standard or defined by the broker). For 
example, TCP port 1883 is reserved for non-encrypted 
while 8883 is for encrypted communication using 
SSL/TLS. A session usually consists of four phases: 
connection, authentication, communication, termination. A 
client can subscribe to topics of interest, defined by a 
publisher and can also unsubscribe from them. The 
connection can be closed either by the client or by the 
broker. 

MQTT is currently used in the Facebook Messenger 
application, since is allows delivering messages in a 
timespan of milliseconds, regardless of the Internet 
connection, but also requires low power, which prevents 
smartphone batteries from draining. 

Security 
The interesting part in the MQTT specification is the 

fact that it has no imposed security mechanisms, because it 
is designed to operate in secure networks, developed for 
specific needs. Therefore, it is not a good idea to create a 
globally MQTT network, because as the size of the topic 
tree grows, complexity increases. 

The IoT environment nowadays requires however a 
standard for authentication and therefore MQTT relies on 
SSL/TLS encryption; otherwise, the username and 
password would be sent in clear text. During the 
handshake, the client validates the server certificate, which 
means that it verifies its identity in order to authenticate it.  

                                                           
1 MQTT V3.1 Protocol Specification, 

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-
v3r1.html 
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Optionally, client certificates can also be used, in such 
way that the broker can authenticate the client that requests 
the connection2. This is not a simple process and there is 
no way for the message receiver to know who sent the 
original message unless that information is contained in 
the actual message (not mandatory). In an extended 
network, a poor application design based on MQTT could 
be an invitation to hackers to inject harmful messages into 
the network in a very easy way. Therefore, security 
features must be implemented on top of MQTT. However, 
considering the specificity of a relatively isolated and 
secured network, this would not be the case. 

The drawback of this mechanism is that SSL/TLS is 
an expensive protocol to use in constrained devices. 
Nowadays, certain brokers accept anonymous clients and 
therefore the username and password are no longer 
required, but it is not desirable in most of the cases. 

B. XMPP 
XMPP (Extensible Messaging and Presence Protocol) 

is composed of a set of open technologies mostly used for 
chat, instant messaging, video and voice calls and is 
standardized by the IETF 3 . In this protocol, data is 
exchanged using small pieces of XML structured data, 
called “XML stanzas”, between two or more network 
entities on a client-server basis. The architecture is, 
therefore, based on client-server concept; the client 
requests the connection to a server to be able to exchange 
messages. Since XMPP runs on top of TCP, a TCP 
connection is needed before opening an XML stream. 
Channel encryption is usually assured with TLS (but not 
mandatory) and the authentication is made via a SASL 
mechanism. Server to server connection is also possible, 
after negotiating between themselves and allowing inter-
domain communication. 

Abstract layering of XMPP is based on (i) Transport 
Control Protocol (TCP), (ii) Transport Layer Security 
(TLS) (iii) Simple Authentication and Security Layer 
(SASL) and finally (iv) Extensible Messaging and 
Presence Protocol (XMPP). 

A XMPP Client is the entity that establishes the XML 
stream with a server, after authenticating itself through 
SASL negotiation. A XMPP server can manage the open 
streams with the connected clients, receiving and 
delivering XML stanzas as required. It also needs to verify 
client authentication prior to granting access to the XMPP 
network. Other responsibilities would be the client data 
storage (e.g. a list of contacts in a chat-like application) 

                                                           
2 TechTarget, IoT Agenda – “MQTT (MQ Telemetry Transport)”, 

http://internetofthingsagenda.techtarget.com/definition/MQTT-MQ-
Telemetry-Transport 

3 XMPP RFC, https://tools.ietf.org/html/rfc6120 

and, for some services such as conferencing, hosting add-
on services that use XMPP as communication basis4.  

Finally, since XMPP based solutions are usually 
deployed in decentralized client-server architectures, there 
are two possible paths: client-to-server stream and server-
to-server stream. If both entities are clients, it is not 
possible for them to open a communication channel 
directly between them; instead they need an intermediate 
entity (a server) with a certain level of trust. 

Security 
In terms of security, the IETF proposes for the XMPP 

native support to authentication via SASL (Simple 
Authentication and Security Layer) and transport security 
with TLS, according to the RFC. The advantage of SASL 
is that it provides a set of authentication methods from 
which the client can choose one that best fits the specific 
needs; however, the drawback is that a weak mechanism 
still can be chosen. SASL uses Base64 coding which hides 
easily recognized information; however, it doesn’t provide 
any computational confidentiality. IETF recommends 
secure mechanisms for peer authentication, such as 
SCRAM-SHA-1 or SCRAM-SHA-1-PLUS, which protect 
against man-in-the-middle-attacks, spoofing and 
unauthorized access. 

The stream is secured from tampering and 
eavesdropping by encrypting using the TLS protocol, 
specifically a STARTTLS extension that is modeled after 
similar extensions for the widely used IMAP, POP3 and 
ACAP protocols. To protect the connection credentials, 
TLS negotiation should complete before starting SASL.  

A strong security strategy could employ security 
technologies that provide both mutual authentication and 
integrity checking (e.g. a combination of TLS encryption 
and SASL authentication). Channel encryption of an XML 
stream using TLS and in some cases authentication are 
commonly based on a PKIX certificate presented by the 
receiving entity or, in the case of mutual authentication, 
both the receiving and the initiating entity. For preserving 
the integrity of the stanzas, the signature algorithm should 
be at least SHA-256. 

Unprotected XMPP systems are vulnerable to 
eavesdropping, sniffing passwords, breaking passwords 
through dictionary attacks, discovering usernames through 
directory harvesting attacks, replaying, inserting, deleting, 
or modifying stanzas, spoofing users, gaining unauthorized 
entry to a server or account, subverting communication 
streams through man-in-the-middle attacks and more. 

One of the most evident vulnerabilities of XMPP, in 
spite of its relative stability, emerges from the fact that a 
stanza can travel along multiple streams, some of them 
might not be TLS-protected. Only a robust end-to-end 

                                                           
4 XMPP Protocol, https://xmpp.org/ 
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encryption could ensure enough confidentiality and 
integrity of a stanza that travels all the “hops” along a 
communication path. However, the XMPP community has 
so far failed to produce an end-to-end encryption solution 
that might be suitable for widespread implementation and 
deployment in IoT. 

C. CoAP 
Since IoT enables a wide range of application 

scenarios with potentially critical actuating and sensing 
tasks in given constrained environments, e.g., in the e-
health domain, a simple, though complete protocol is 
needed. CoAP (Constrained Application Protocol) is a 
specialized web transfer protocol for use with IoT 
constrained nodes (i.e. having limited memory and 
processing power) and constrained networks (i.e. low-
power and lossy), being currenly standardized at the 
IETF5. 

CoAP obeys a simple request/response interaction 
model between application endpoints, most similar to the 
client/server model of HTTP, also providing built-in 
support for services and resources. CoAP makes use of 
GET, PUT, POST, and DELETE methods in a similar 
manner to HTTP. 

However, unlike HTTP, CoAP deals with these 
interchanges asynchronously over a datagram-oriented 
transport, such as UDP, most suitable in constrained 
environments. Also, having UDP in transport layer, unlike 
HTTP, CoAP supports the use of multicast IP destination 
addressing, thus enabling multicast requests. 

Moreover, unlike HTTP, requests and responses are 
not sent over a previously established connection, but are 
exchanged asynchronously over CoAP messages. All 
CoAP traffic can be supported through only four types of 
messages: (i) Confirmable (CON), (ii) Non-confirmable 
(NON), (iii) Acknowledgement (ACK) and (iv) Reset 
(RST).  

Abstract layering of CoAP is based on (i) UDP, (ii) 
Requests/Responses and Messages and (iii) Application. 

Message reliability is provided by marking as CON, 
eventually retransmitting it on a default timeout basis until 
a corresponding ACK is received from the corresponding 
endpoint. However, when a message does not require 
reliable transmission (for example, each single 
measurement out of a stream of sensor data) it can be sent 
as NON. As CoAP is by default bound to unreliable 
transports such as UDP, messages may arrive out of order, 
appear duplicated, or go missing without notice. For this 
reason, CoAP implements a lightweight reliability 
mechanism, without trying to re-create the full feature set 
of a transport like TCP. 

                                                           
5 CoAP RFC, https://tools.ietf.org/html/rfc7252 

Security 
Various solutions can be employed for binding a 

security layer to CoAP. The specificity of using UDP 
instead of TCP for transport makes inapplicable the known 
security protocols in the form they are used in association 
with TCP. Conversely, for some of such protocols 
substitutes have been developed. For example, the 
replacement of TLS (specific to TCP) into UDP 
environments is DTLS (Datagram Transport Layer 
Security). 

Due to the physically limited access, some 
applications do not even need to employ any security 
bound to transport layer (UDP). Instead, there are 
techniques to provide lower-layer security, namely IPSec 
at the lower (network) layer, when connecting to the 
outside world. In this mode, the data packets are simply 
sent over normal UDP over IP. The system security is 
provided only by routing techniques, by keeping attackers 
from being able to send/receive packets to/from the 
specific network with the CoAP nodes. 

By using the three DTLS modes described below, for 
securing UDP transport for CoAP, the new architecture is 
called CoAPs (secured), just the same as HTTP secured 
with SSL/TLS is replaced by HTTPS [8]. In this way, the 
security association can be used to authenticate (within the 
limits of the security model) and, based on this 
authentication, authorize the communication partner, since 
CoAP itself does not provide any protocol primitives for 
authentication or authorization. 

PreSharedKey mode is based on a list of pre-shared 
keys, each one including a list of nodes it can be used to 
communicate with.  There may be one key for each node, 
however if more than two entities share the same pre-
shared key, this only enables the entities to authenticate as 
a member of a group and not as a specific peer. When 
trying to establish a connection to a new node, the system 
selects an appropriate key based on which nodes it is 
trying to reach and then forms a DTLS session using PSK 
(Pre-Shared Key) mode of DTLS. 

In RawPublicKey mode, the device has an asymmetric 
key pair without a certificate (a raw public key) that is 
validated using an out-of-band mechanism (most common, 
the asymmetric key pair is generated by the manufacturer 
and installed on the device), an identity calculated from the 
public key and a list of identities of the nodes it can 
communicate with. A device may be configured with 
multiple raw public keys. Implementations in 
RawPublicKey mode must support cipher suite 
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8. The 
key used must be ECDSA capable. 

In Certificate mode, the device has an asymmetric key 
pair with an X.509 certificate that binds it to its subject and 
is signed by some common trust root. The device also has 
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a list of root trust anchors that can be used for validating a 
certificate. Implementations must support the cipher suite 
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8. If the 
system has a shared key in addition to the certificate, then 
a cipher suite that includes the shared key such as 
TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA should 
be used. 

Using full DTLS for securing CoAP may introduce a 
significant overhead in constrained environments with 
either limited local memory on nodes, or limited 
bandwidth on communication, or both, affecting the 
overall solution efficiency. Therefore, depending on 
application, DTLS modes may be configured by disabling 
all the unnecessary ones, thus making the protocol much 
lighter. 

CoAP supports a limited set of HTTP functionality 
and thus cross-protocol proxying to HTTP is 
straightforward. For example, when designing a web 
interface for use over either protocol or when realizing a 
CoAP-HTTP proxy. Likewise, CoAP could be equally 
proxyed to other protocols such as XMPP or MQTT, 
which is a very good thing in terms of application 
interoperability. Proxying is accomplished by means of an 
intermediary. However, care should be taken when 
designing and authorizing such solutions because of 
vulnerabilities that can be introduced. For example, for any 
pair of protocols, one of the protocols can very well have 
been designed in a way that enables an attacker to cause 
the generation of replies that look like messages of the 
other protocol. 

It is often much harder to ensure or prove the absence 
of viable attacks than to generate examples that may not 
yet completely enable an attack but might be further 
developed by more creative minds. 

IV. VULNERABILITIES AND ISSUES 
At the application layer, data, applications, and 

visualization servers are usually operated in large and 
complex clusters or in the cloud computing 
infrastructures, therefore can be affected by data 
tampering, authentication to the servers, authorization of 
services, provisioning of data. 

Based on the specific environment of any IoT based 
solution, any challenges or possible vulnerabilities at any 
layer including application layer can be more or less 
meaningful. For this reason, they must be carefully 
assessed in the early stages of the technical design. 

According to [9], vulnerabilities are weaknesses in a 
system or its design that allow an intruder to execute 
commands, access unauthorized data, and/or conduct 
denial-of-service attacks. More, [10] identifies a threat as 
an action that takes advantage of security weaknesses in a 
system and has a negative impact on it, being originated 
from two primary distinct sources: humans and nature. It 

is evident that natural threats cannot be forecasted, the 
good news is that disaster recovery plans are the best and 
universally applicable choice to ensure business 
continuity. The human attacker is certainly smart and is 
likely to destroy privacy in the application layer by a 
known vulnerability (e.g., buffer overflow, cross site 
scripting, SQL injection and others), error configuration 
(simple password for example), or improperly obtained 
higher permission access. Four security threats at the 
application layer are identified in this context [11]: 

1. Privacy leak – given that the application of IoT is 
executed on common operating systems and hosting 
services, the attacker can easily steal user data (e.g., 
user password, historical data, and social relations) 
by known vulnerabilities 

2. DoS attack – the attacker can destroy the 
availability of the application itself 

3. Malicious code – the attacker can upload malicious 
codes through the known vulnerabilities, leading to 
fetcher software infections 

4. Social engineering – certain relationship exists 
among IoT users which attackers can easily analyze 
or obtain additional information that can be used for 
attacks by social engineering. 

[8] concludes that technical vulnerabilities usually 
happen due to human weaknesses. Results of not 
understanding the requirements comprise starting the 
project without a plan, poor communication between 
developers and users, a lack of resources, skills, and 
knowledge, and failing to manage and control the system. 
More, attacks are actions taken in order to harm a system 
or disrupt normal operations by exploiting vulnerabilities 
by using various techniques and tools. 

Testing applications for security flaws goes well 
beyond simply preventing attacks. Application 
vulnerabilities can lead to lost or stolen data, which could 
potentially result in even more serious consequences, 
such as stakeholder lawsuits, extensive remediation costs 
and damage to brand reputation. 

V. FINDING NEW RESEARCH DIRECTIONS 
To reduce both potential threats and their 

consequences, more research is needed to fill the gaps 
in knowledge regarding threats and cybercrime and 
provide the necessary steps to mitigate probable attacks. 

Some IoT application protocols do not even have 
security features, so they can not actually be used in a 
Internet based IoT solution, even if, in terms of 
functionality, they perform better than others prefferred 
with security in mind. For example, in can be mentioned 
that more work can be done to empower XMPP or 
MQTT in E2E secured solutions. 
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Regarding CoAP, even if DTLS is being considered 
to support security, it presents some limitations 
motivating other approaches to security at the 
application-layer that can be addressed by further 
research. In [12] the author discusses various issues that 
may impede the usage of DTLS in constrained sensing 
devices, for example, the inadequateness of the timers 
for message retransmission as defined in the protocol, 
which may require large buffers on the receiver to hold 
data for retransmission purposes, and the size of the 
code required to support DTLS in constrained sensing 
platforms. In response, [13] and [14] propose solutions 
to some issues identified during massive cyberattacks in 
the last three years, by making TLS/DTLS more rapid 
and resilient, however, some issues still remain and still 
need to be addressed by researchers. 

Further research can also address the support of 
public keys and certificates in the context of CoAP 
security. Online validation of certificates may be 
achieved by investigating the applicability of existent 
Internet approaches such as the Online Certificate 
Status Protocol (OCSP) [15] or OCSP stapling through 
the TLS Certificate Status Request extension defined in 
RFC 6066 [16], considering that such mechanisms 
could be adapted or simplified. 

Other important issue to consider for further 
research is the computational impact of ECC 
cryptography on existing sensing devices. In this 
context, optimizations may be designed at the hardware 
of sensing platforms to support ECC computations. 

In this context, [11] concludes that the overall 
research on security issues related to the IoT domain 
remains inadequate. The inherent openness, 
heterogeneity, and terminal vulnerability of the IoT 
pose a huge risk, considering two main problems: 
coupling (different technologies and trust mechanisms 
are related to each other) and completness (security 
architecture design should consider future application 
trends). 

Considering the benefits of scalability and 
interoperability at the application layer, further research 
must be taken in the field of securing cross-protocol 
proxies for the application layer IoT solutions. 

VI. CONCLUSIONS 
The Internet of Things is an universal medium for 

"things" to communicate with each other via Internet, 
access data on the Internet, store and retrieve data, and 
interact with users. They will continue to change our 
lives as the involved technologies are continuously 
growing. This paper describes briefly three of the IoT 
application layer protocols from the security point of 
view. It can be seen that a trade-off is made between 
lightweight and security, thus none of them is best for 

any type of solution in terms of both security and 
functionality. 

Security is the biggest challenge facing the IoT 
today. In developing new solutions for the IoT, 
organizations must consider the larger context and 
implications of security and privacy from the very 
beginning. On the other hand, to prevent cyber attacks, 
organizations must ensure that they educate their 
consumers about the correct security procedures to be 
followed while using an IoT system. 

It is evident that successful attackers are smart 
since their success is based on knowledge. But it is also 
true that for successful IoT projects, the designers must 
be smarter, in other words be at least one step in front 
of any smart attacker. It is a continuous competition 
between the two parties and will forever be like that, 
since none is truly wise, meaning know and understand 
everything. For that, like in any domains, the IoT 
research has to continue forever, sooner or later any 
reasonable technological barrier that can be imagined 
nowdays has to be broken. 

In conclusion, this survey may provide a 
contribution to documenting the status of the dynamic 
area of research in securing the IoT application layer 
protocols. 
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